Identification of mitochondrial coenzyme a transporters from maize and Arabidopsis.
نویسندگان
چکیده
Plants make coenzyme A (CoA) in the cytoplasm but use it for reactions in mitochondria, chloroplasts, and peroxisomes, implying that these organelles have CoA transporters. A plant peroxisomal CoA transporter is already known, but plant mitochondrial or chloroplastic CoA transporters are not. Mitochondrial CoA transporters belonging to the mitochondrial carrier family, however, have been identified in yeast (Saccharomyces cerevisiae; Leu-5p) and mammals (SLC25A42). Comparative genomic analysis indicated that angiosperms have two distinct homologs of these mitochondrial CoA transporters, whereas nonflowering plants have only one. The homologs from maize (Zea mays; GRMZM2G161299 and GRMZM2G420119) and Arabidopsis (Arabidopsis thaliana; At1g14560 and At4g26180) all complemented the growth defect of the yeast leu5Δ mitochondrial CoA carrier mutant and substantially restored its mitochondrial CoA level, confirming that these proteins have CoA transport activity. Dual-import assays with purified pea (Pisum sativum) mitochondria and chloroplasts, and subcellular localization of green fluorescent protein fusions in transiently transformed tobacco (Nicotiana tabacum) Bright Yellow-2 cells, showed that the maize and Arabidopsis proteins are targeted to mitochondria. Consistent with the ubiquitous importance of CoA, the maize and Arabidopsis mitochondrial CoA transporter genes are expressed at similar levels throughout the plant. These data show that representatives of both monocotyledons and eudicotyledons have twin, mitochondrially located mitochondrial carrier family carriers for CoA. The highly conserved nature of these carriers makes possible their reliable annotation in other angiosperm genomes.
منابع مشابه
Identification of Mitochondrial Coenzyme A Transporters from Maize and Arabidopsis1[W][OA]
Microbiology and Cell Science Department (R.Z., C.L.-O., V.d.C.-L.) and Horticultural Sciences Department (O.F., K.W.E., A.D.H.), University of Florida, Gainesville, Florida 32611; Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70125 Bari, Italy (G.A., A.C., A.R., F.P.); and Department of Molecular and Cell...
متن کاملFunction of mitochondrial complex-I and -IV in normal human and Parkinson's disease cybrids
Mitochondrial dysfunction has been implicated in the dopaminergic neurodegeneration, which characterizes Parkinson’s disease (PD). The activities of mitochondrial complexes I and IV were found to be reduced in the brains of PD patients (n = 4) as compared to age-matched controls (n = 4). This is tested in SH-SY5Y cell lines, transformed Rho0 cells, and in normal and PD cybrid cell lines. Cybrid...
متن کاملFunction of mitochondrial complex-I and -IV in normal human and Parkinson's disease cybrids
Mitochondrial dysfunction has been implicated in the dopaminergic neurodegeneration, which characterizes Parkinson’s disease (PD). The activities of mitochondrial complexes I and IV were found to be reduced in the brains of PD patients (n = 4) as compared to age-matched controls (n = 4). This is tested in SH-SY5Y cell lines, transformed Rho0 cells, and in normal and PD cybrid cell lines. Cybrid...
متن کاملNetwork-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes
Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...
متن کاملIdentification, separation, and characterization of acyl-coenzyme A dehydrogenases involved in mitochondrial beta-oxidation in higher plants
The existence in higher plants of an additional beta-oxidation system in mitochondria, besides the well-characterized peroxisomal system, is often considered controversial. Unequivocal demonstration of beta-oxidation activity in mitochondria should rely on identification of the enzymes specific to mitochondrial beta-oxidation. Acyl-coenzyme A dehydrogenase (ACAD) (EC 1.3.99.2,3) activity was de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 162 2 شماره
صفحات -
تاریخ انتشار 2013